Assignment 3.

Möbius transformations. Complex differentiation

This assignment is due Wednesday, Feb 11. Collaboration is welcome. If you do collaborate, make sure to write/type your own paper.

- (1) Find Möbius transformation that carries points -1, i, 1+i into
 - (a) $0, 2i, 1-i, (Hint: From -1 \to 0 \text{ you know that it has the form } \frac{z+1}{az+b}.)$
 - (b) $i, \infty, 1$. (*Hint:* As above, note that $i \to \infty$.)
- (2) Find the images of the following domains under the indicated Möbius transformations:

(a) The quadrant x > 0, y > 0 if $w = \frac{z-i}{z+i}$. (b) The half-disc |z| < 1, $\operatorname{Im} z > 0$ if $w = \frac{2z-i}{2+iz}$. (c) The strip 0 < x < 1 if $w = \frac{z}{z-1}$. (d) The strip 0 < x < 1 if $w = \frac{z-1}{z-2}$. (*Hint:* You mainly need to keep track of the borders. It should help a bit to keep in mind that under $z \to \frac{1}{z-b} + b$, straight lines that do not pass through b go to circles that pass through b; and straight lines that pass through b, go to straight lines that pass through b.)

- (3) Show that the function $f(z) = z \operatorname{Re} z$ is differentiable only at the point z = 0, and find f'(0).
- (4) Find v(x,y) such that the function f(z) = 2xy + iv(x,y) is complex differentiable. Express f as a function of z.
- (5) Show that in polar coordinates, at every nonzero point of C, Cachy–Riemann equations take form

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \varphi}, \quad \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \varphi}.$$

(*Hint:* Differentiate $\frac{\partial u(x,y)}{\partial r} = \frac{\partial u(r\cos\varphi,r\sin\varphi)}{\partial r}$ using chain rule. Do the same with other partial derivations $\frac{\partial u}{\partial \varphi}, \frac{\partial v}{\partial r}, \frac{\partial v}{\partial \varphi}$. Use "usual" Cauchy–Riemann equations.)

- (6) Let $z_0 \neq 0$ and let $f(z) = \ln r + i\varphi$, where $r = |z|, \varphi \in \operatorname{Arg} z$, and φ is chosen so that f is continuous in a neighborhood of z_0 . Prove that f is differentiable in a neighborhood of z_0 .
- (7) Find an angle by which tangents to curves at z_0 are rotated under the mapping $w = z^2$ if

(a)
$$z_0 = i$$
, (b) $z_0 = -1/4$, (c) $z_0 = 1 + i$.

Also find the corresponding values of magnification.

(8) Which part of the plane is shrunk and which part stretched under the following maps: (a) $w = z^2$, (b) $w = z^2 + 2z$, (c) w = 1/z? (Hint: Whether a map f shrinks or stretches at z_0 depends on $|f'(z_0)|$.)